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Scalar mixing in homogeneous isotropic turbulence: A numerical study
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The understanding of the mechanics of turbulent dispersion is of primary importance
in estimating the effects of mixing processes involved in a variety of events playing a
significant role in our daily life. This motivates research on the characterization of statistics
and the complex temporal evolution of passive scalars in turbulent flows. A key aspect
of these studies is the modeling of the probability density function (PDF) of the passive
scalar concentration and the identification of its link with the mixing properties. In order
to investigate the dynamics of passive scalars as observed in nature and in laboratory
experiments, we perform here direct numerical simulations of a passive tracer injected
in the stationary phase of homogeneous isotropic turbulence flows in a setup mimicking
the evolution of a fluid volume in the reference frame of the mean flow. In particular, we
show how the gamma distribution proves to be a suitable model for the PDF of the passive
scalar concentration and its temporal evolution in a turbulent flow throughout the different
phases of the mixing process. Then, assuming a gamma distribution, we develop a simple
mixing model by which we can estimate a mixing timescale, which regulates the decay
rate of the intensity of the concentration fluctuations.

DOI: 10.1103/PhysRevFluids.6.034502

I. INTRODUCTION

Turbulent dispersion and mixing of passive scalars are ubiquitous in nature. As is well known,
the turbulent character of the high Reynolds (Re) number flows is reflected on the fluctuations of
the passive scalar concentration occurring over a wide range of spatial and temporal scales [1]. The
statistical characterization of these fluctuations is essential for the modeling of several processes
occurring in industrial, biological, and environmental flows (see Fig. 1 as examples). To this aim,
over the years this issue has been tackled by several authors considering a large variety of flow
configurations [2–8].

In a number of applications of interest in physics, chemistry, biology, and engineering, a key
aspect is the prediction of the spatial variability of the one-point probability density function (PDF)
of the scalar field. Previous works have shown that, depending on the flow configuration, this can
be modeled by different distributions [2–9], including the Weibull, the lognormal, and the gamma
distributions. Notably, the latter was shown to be a suitable model for both dispersion and mixing
in internal flows [2–7] and in the atmosphere [6–8,10–14].

The present paper aims at further exploring the above features, through the investigation of
concentration statistics and mixing in a framework mimicking the evolution of the passive scalar in
a homogeneous isotropic turbulent flow. To this purpose, we performed direct numerical simulations
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FIG. 1. (a) Plume generated by a chimney (i.e., an elevated continuous source in a nonisotropic and
nonhomogeneous turbulent flow field); (b) volcanic ash and steam in the Sunda Strait released by the Anak
Krakatau volcano in Indonesia 3 months before its eruption in December 2018.

(DNSs) of a stationary turbulent velocity field (with zero mean) where a puff of passive scalar was
released and let evolve to get insights on its diffusion and mixing properties (Sec. II). In Sec. III
concentration statistics and PDF computed on the pointwise simulated fields were first checked to
ascertain their reliability and then linked to the main mechanisms involving the mixing. Finally,
we discuss the consistency between spatial statistics computed by the DNS (seeing the puff as
evolving in a Lagrangian framework moving with the mean flow) and the temporal statistics based
on one-point wind-tunnel measurements (Sec. IV).

II. NUMERICAL SIMULATION

In order to investigate the dispersion and mixing of a passive scalar in homogeneous isotropic
turbulence (HIT), the Navier-Stokes equations for an incompressible fluid together with the
convection-diffusion equation for the concentration are integrated by means of the geophysical
high-order suite for turbulence code [15], a highly parallelized (hybrid MPI-OPENMP) pseudospectral
framework with second-order explicit Runge-Kutta time stepping. The Navier-Stokes equations
have been integrated on a cubic grid of 5123 points (corresponding to a box whose linear size in
adimensional units is L0 = 2π ) with periodic boundary conditions. A stochastic forcing F was used
to inject energy into the velocity field to achieve and maintain a statistically stationary state. The
forcing is random in time and isotropic in Fourier space with the energy being injected at large
scales in a spherical shell of wave-numbers 2 � |ki| � 3. A puff of a passive scalar modeled with
a Gaussian concentration peaked in the center of the box is injected at an arbitrary time in the
statistically stationary state of the simulation and is let to diffuse. The full system of equations
implemented is reported here

∇ · u = 0,

∂t u + (u · ∇)u = −∇p + F + 1

Re
∇2u, (1)

∂t c + u · ∇c = 1

Pr Re
∇2c,

u being the velocity field, p is the pressure, and c is the passive scalar concentration. The DNS
governing parameters are the Prandtl (Pr) and the Reynolds (Re) numbers. The former, defined as
Pr ≡ ν/κ , is set equal to 1 (being ν and κ the kinematic viscosity and the diffusivity, respectively).
The latter is instead Re ≡ UL

ν
, where U = √

3σ 2
u (being σ 2

u = σ 2
v = σ 2

w ∼ 1 the variances of the
three velocity components averaged over the computational domain) and L = 2π

ki∼2.5 , respectively,
are the characteristic velocity and the integral length scale of the background fluid (the latter being
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FIG. 2. Visualization of different instants of the DNS solutions and corresponding concentration PDFs: at
the top (t0), the initial condition can be observed; at the bottom right (t4), the passive scalar homogenizes itself
within the box.

estimated as the scale at which energy is injected into the system). Based on these quantities we
can estimate the turnover time t∗ ≡ L/U , the characteristic timescale of the simulation, whose total
extension is about 10t∗. The simulations have been performed at two Reynolds numbers, namely,
3000 and 3500. For Re = 3000 the Kolmogorov length scale is η = (ν3/ε)1/4 = 8.15 × 10−3 (ε
is the turbulent kinetic-energy dissipation rate), which is three orders of magnitude lower than the
integral length scale (η/L = 3.24 × 10−3). Note that the (periodic) boundary conditions induce the
concentration averaged over the domain (c) to be constant throughout the simulation duration.

III. RESULTS

The concentration statistics provided by the DNS results allow the temporal evolution of the
mixing process to be investigated. To that purpose, we focus on two main statistical indicators:
the shape of the PDF of the spatial distribution of the concentration and the (volume-averaged)
concentration fluctuations intensity ic (defined as the ratio between the standard deviation of the
concentrations σc and c). The first feature that is worth noting is the strict connection between the
temporal evolutions of these two indicators.

Notably, once excluded the early transient of the simulation (lasting less than one turnover time
t∗) during which the system progressively “loses memory” of the initial concentration distribution
(Fig. 2, t0), we can identify two main stages of the process by linking the shape of the PDFs (Fig. 2)
to ic (Fig. 3). To allow the reader to suitably capture this connection between the concentration
PDF and ic, we provided a movie as Supplemental Material [16]. During the first phase, starting at
the inflection point of ic, the scalar is progressively transported throughout the domain as shown in
Fig. 2 at t1. This stage presents specific features: (i) ic is larger than 1, (ii) the concentration PDF is
characterized by a large number of zero values (mostly distributed at the edge of the evolving puff),
and (iii) it approximates an exponential-like shape. The second phase begins when the domain
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FIG. 3. Behavior of the concentration fluctuations intensity ic over time: four instants t1, t2, t3, and t4 are
highlighted.

gets completely filled by the passive scalar (Fig. 2 at t2) and ic = 1 (Fig. 3), and it is mostly
characterized by the diffusion. During this stage the scalar field progressively homogenizes (as
shown in Fig. 2 at t3) and the concentration PDFs assume a lognormal-like shape. The increasing
scalar homogenization (Fig. 2 at t4) induces a further transition of the PDFs towards a clipped
Gaussian [13].

The results of the simulations performed with two different Reynolds numbers (i.e., Re = 3000
and Re = 3500) did not show any relevant difference one to the other. In what follows we will,
therefore, present results for the case of Re = 3000. Concentration statistics recover those obtained
with the smaller blob as t/t∗ > 2.

A. Concentration PDF

In order to identify the statistical distribution showing the best agreement with the presented
numerical results, we tested different models for the scalar PDF. To do this, we, therefore, computed
the PDF of the concentration for each time step. The agreement between the PDFs obtained from the
DNS and the analytical model distributions is estimated here using the Kullback-Leibler divergence
DKL [17], defined as

DKL(p ‖ q) ≡ −
∑

p log2

(
p

q

)
, (2)

where p is the PDF from the DNS and q is the distribution assumed as a model. According to this
definition, the best agreement is observed when p/q → 1, i.e., for DKL → 0.

We tested three different distributions which have been proposed over the years as suitable
models for the passive scalar concentration PDF within a turbulent flow [2–9]. These are as follows:

(1) the gamma distribution,

p(χ |λ, θ ) = 1

�(λ)θ

(χ

θ

)λ−1
exp

(
−χ

θ

)
, (3)

where χ is the sample space variable for the concentration, �(·) is the Gamma special function
[18], and λ = i−2

c and θ = σ 2
c /c are the shape and scale parameters, respectively. It is worth noting

that normalizing the distribution as χ ′ ≡ χ/c allows us to reduce the problem to only the shape
parameter λ [2,19,20];
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FIG. 4. Kullback-Leibler divergence of the PDF from the DNS results (semilogarithmic plot): comparison
among the gamma, the lognormal, and the Weibull 2p distributions. The two vertical dashed lines indicate
different phases of the mixing processes as defined in Sec. III. The KL divergence of the gamma distribution
presents a good overall behavior, and it is the most suitable choice for modeling the scalar-field PDF for all the
time steps.

(2) the lognormal distribution,

p(χ |μl , σl ) = 1

χσl

√
2π

exp

[
− (ln χ − μl )2

2σ 2
l

]
(4)

for χ > 0 and with the parameters,

μl = ln
(
c2/

√
σ 2

c + c2
)
,

σl =
√

ln
(
σ 2

c /c2 + 1
)
, (5)

(3) the Weibull 2p distribution,

p(χ |aw, bw ) = bw

aw

( χ

aw

)bw−1
exp

[
−

( χ

aw

)bw
]
, (6)

being aw and bw the scale and the shape parameters, respectively, set as

i2
c + 1 − �

(
1 + 2

bw

)
[
�

(
1 + 1

bw

)]2 = 0,

aw = c

�
(
1 + 1

bw

) . (7)

We point out that the computation of bw requires to solve the nonlinear Eq. (8). We mention that
for practical application the shape parameters can be conveniently approximated as bw ≈ (1/ic)1.086

e.g., Ref. [21].
As shown in Fig. 4, close to t0 the lognormal distribution is not appropriate since it is not able

to reproduce the effects of the meandering process in the near field as observed close to the scalar
source in wind-tunnel experiments. Conversely, it provides accurate estimates of the scalar PDF
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after the homogenization process induced by the relative dispersion. The Weibull 2p distribution
performs suitable approximations of the concentration PDF in the near field, whereas it fails to
model the distribution of the scalar at large values of t/t∗.

The gamma distribution shows a more accurate overall behavior providing a good agreement
with the numerical solutions both in the near and in the far field. Such behavior suggests that the
gamma PDF is a robust model being able to replicate the main features of the mixing process over
the entire DNS.

B. Mixing

As a second step, we discuss here the implications of a mixing process due to the interaction of
pollutant particles, assuming, based on the results presented in the previous paragraph, that the PDF
of the concentration within our reference volume is a gamma distribution. In order to analyze the
mixing process, we focus on the fluctuations intensity ic, that progressively goes to zero. Note that
because of the imposed boundary conditions (Sec. II), the decay of ic is entirely due to the reduction
of the standard deviation σc since the spatially averaged concentration c(t ) remains unaltered.

We represent the passive-scalar puff as constituted of an ensemble of “marked” fluid particles
so that the mixing process is modeled as a “discrete” phenomenon resulting by the interaction of
pairs of marked fluid particles. This is a classical pattern in PDF methods for the prediction of
concentration fluctuations (referred to as micromixing models) implemented in Lagrangian one-
particle dispersion models [9,22]. In this kind of model, each fluid particle exchanges mass with the
surrounding particles and, as a consequence, the concentration statistics defined by an ensemble of
neighboring particles evolve in time. Then, following this analogy, the concentrations of the fluid
particles can be considered as single realizations of the same random variable whose statistical
behavior is modeled by a distribution that we assume to be a gamma PDF. The two fluid particles,
denoted as 1 and 2, exchange mass each other so that the temporal evolution of their concentrations
develops as a system of two ordinary differential equations,

dc1

dt
= −c1 − c2

τm
,

dc2

dt
= −c2 − c1

τm
, (8)

here τm is the characteristic timescale of the mixing process. The solution of the system above in
the time-interval [t ′, t ′ + �t] is as follows:

c1(t ′ + �t ) = (1 − α)c1(t ′) + αc2(t ′),

c2(t ′ + �t ) = αc1(t ′) + (1 − α)c2(t ′), (9)

where

α ≡ 1

2

[
1 − exp

(
−2

�t

τm

)]
. (10)

Generalizing this approach to any pair of fluid particles i and j within the domain, we conclude that
predicting the effect of mixing is equivalent to estimate the PDF of a new random variable ck given
by a weighted sum of ci and c j ,

ck (t ′ + �t ) = (1 − α)ci(t
′) + αc j (t

′). (11)

The PDF of ck is then given by the convolution of the PDFs for ci and c j . Since ci(t ′) and c j (t ′) are
both distributed according to the same gamma PDF p(λ, θ ), we have that

(1 − α)ci(t
′) follows pi[λ, (1 − α)θ ],

αc j (t
′) follows p j (λ, αθ ). (12)
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As far as we are aware, simple expressions for the convolution of two gamma distributions having
different scale parameters [as in Eq. (13)] are not known. Moschopoulos [23] and Sim [24] provided
the exact convolution as a sum of infinite terms, and Mathai [25] and Akkouchi [26] proposed
some complicated formulas. An alternative approach was investigated in Stewart et al. [27] who
showed that the sum of gamma PDFs is suitably approximated by a gamma distribution if the scale
parameters differ no more than a factor of 10, and the shape parameters are not below 0.1. In our
case these conditions are generally satisfied. The first condition is fulfilled for �t � 0.2 τm, and
the second one is fulfilled for ic � 3.2. Therefore, the PDF pk (λk, θk) of ck [Eq. (11)] is suitably
approximated as a gamma distribution [27], and its scale and shape parameters can be determined
by computing mean and variance as follows:

ck = λkθk

= λ(1 − α)θ + λαθ

= λθ,

σ 2
c,k = λkθ

2
k = λ(1 − α)2θ2 + λα2θ2

= λθ2[(1 − α)2 + α2],

θk = σ 2
c,k

ck

= θ [α2 + (1 − α)2],

λk = c2
k

σ 2
c,k

= λ

α2 + (1 − α)2
. (13)

As a consequence of the mixing process, the first two moments of the concentration PDF evolve as
(dropping the indices for clarity),

c(t ′ + �t ) = c(t ′),

σ 2
c (t ′ + �t ) = βσ 2

c (t ′), (14)

where

β ≡ α2 + (1 − α)2 = 1

2

[
1 + exp

(
−4

�t

τm

)]
. (15)

Performing a limited development of this process for short intervals and neglecting the higher-order
terms, we obtain the evolution of the characteristics of the distribution between t ′ and t ′ + �t ,

c(t ′ + �t ) = c(t ′)

σ 2
c (t ′ + �t ) =

(
1 − 2

�t

τm

)
σ 2

c (t ′). (16)

Since Eq. (17) represents the incremental ratio of σc, we can write the time derivative of the
concentration variance as

lim
�t→0

σ 2
c (t ′ + �t ) − σ 2

c (t ′)
�t

= dσ 2
c

dt
= − 2

τm
σ 2

c , (17)

which essentially expresses the dissipation rate of the scalar variance εc ≡ −2ν〈∂c′/∂xi〉2.
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FIG. 5. Mixing timescale τm vs t/t∗. In the far field τm reaches the asymptotic value of k/ε.

The above expression can be integrated in order to obtain the temporal evolution of σ 2
c ,

σ 2
c (t ) = σ 2

c (0) exp
(
−2

t

τm

)
, (18)

and, therefore,

σc(t ) = σc(0) exp
(
− t

τm

)
. (19)

Since we have c(t ) = c(0), we finally obtain that the temporal decay of ic evolves as

ic(t ) = ic(0) exp
(
− t

τm

)
, (20)

showing that the assumption of the gamma distribution for the concentration PDF implies that the
fluctuations intensity is given by a negative exponential, whose decay is governed by a typical
mixing timescale.

The mixing timescale τm can be estimated from our numerical experiments by locally fitting
Eq. (20) (i.e., over short intervals) with the DNS results for ic, having τm as a free parameter
(evolving in time). Once excluded the initial transient (t/t∗ < 1), this timescale exhibits a smoothly
growing trend in the first phase and oscillates around a constant value in the second phase. At
later times, in the second phase of the simulation τm attains an asymptotic value equal to the

dissipative timescale τ ≡ k/ε ( where k ≡ 3
2σ 2

u is the turbulent kinetic energy and ε ≡ 2ν〈si jsi j〉
is its dissipation rate ) [28,29] as pointed out in Fig. 5. We highlight that the numerical results show
that for large values of t/t∗ the ratio τ/τm ≈ 1, which is in agreement with the findings of other
authors that reported values in the range of 0.3–1.56 for different configurations [22,30–33].

IV. ANALOGIES WITH WIND-TUNNEL RESULTS
AND CROSS VALIDATION OF THE GAMMA MODEL

In Sec. III we have shown the temporal evolution of the normalized PDF of the passive scalar
concentration and pointed out its link with the value of ic: The shape of the PDF exhibits an
exponential-like form as far as ic > 1, and it abruptly changes shape for ic = 1 and evolves as a
Gaussian-like distribution as ic → 0. This same behavior, observed here adopting statistics over a
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FIG. 6. Comparison between the normalized PDFs of the passive scalar concentration from the DNS, the
wind-tunnel measurements by Nironi et al. [13], and the gamma distribution of Eq. (3) at decreasing values of
ic: (a) ic = 2.25 at t1, (b) ic = 1 at t2, (c) ic = 0.53 at t3, and (d) ic = 0.33 at t4.

control fluid volume for each time step, was observed in wind-tunnel experiments when analyzing
one-point statistics obtained from concentration time series measured at a fixed location downwind
a continuous scalar release in a turbulent boundary layer as described in Ref. [13]. Indeed, wind-
tunnel experiments have shown that the statistics of the concentration of a continuous scalar plume
in a boundary layer (i.e., a nonisotropic and nonhomogeneous velocity field) can be fully described
by a gamma distribution as reported in Eq. (3).

In Fig. 6 we show a comparison between the present DNS results, the one-point wind-tunnel
statistics performed by Nironi et al. [13] and the gamma distribution [Eq. (3)] for the same values
of ic (being t1, t2, t3, and t4 the same as in Fig. 3). Here, we can appreciate how the DNS solutions
and the wind-tunnel measurements exhibit a similar behavior and that the gamma distribution can
be assumed as a suitable model for both numerical and experimental PDFs. To explain this evidence
from a phenomenological stand point, we can rely on the depiction in Fig. 7, proposing the analogy
between the present DNS simulation of an unsteady decaying puff and the wind-tunnel results of a
steady release of a passive scalar in a turbulent wall-bounded flow.

A peculiar aspect of the dispersion of localized atmospheric releases is the appearance of a
meandering motion of the plume [12] due to the action of turbulent eddies larger than the plume size.
The meandering highly affects the dispersion process in the near field of the source and is gradually
attenuated moving away from it as the size of the plume increases under the action of the relative
dispersion (due to eddies smaller than the puff size). As the relative dispersion finally induces the
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FIG. 7. Top panel: sketch of a plume as made of multiple puffs, the Eulerian approach. Bottom panel:
numerical point of view, the Lagrangian approach. We observe the relationship between space and time in the
two different approaches as well as the regions of meandering and relative dispersion.

plume size to exceed the size of the larger-scale structure of the flow, the plume meandering is
suppressed. At first sight, we can consider that the transition between these two regimes occurs as
ic drops below 1, and the intermittency is suppressed in the core of the plume [13].

In the puff, at each time step, every point of the simulation domain can be considered as a possible
realization of the plume along the source axis at a given distance from the source, in the equivalent
reference wind-tunnel experiment. In other words, we can consider that the DNS results mimic the
evolution of the scalar puffs released in the wind tunnel as they get translated horizontally by the
mean flow whereas undergoing turbulent advection. Invoking the ergodicity of both numerical and
experimental flows, we could, therefore, compare the spatial statistics computed on the simulation
output (Fig. 7, bottom) with the single-point temporal statistics computed in the wind tunnel (Fig. 7,
top). Thus, taking a specific instant of the DNS, the spatial statistics of the concentration over the
entire simulation box would match the temporal statistics of the concentration signal measured at the
corresponding position (always on the plume centreline, i.e., at the source height) in the wind-tunnel
experiment. In this framework, the near-source meandering region in the experiments (Fig. 7, top
panel) in which one-point statistics exhibit high intermittency, corresponds to the first phase of the
DNS simulation (Fig. 7, bottom panel, t1) in which the scalar has not filled the domain yet, and the
spatial concentration statistics are affected by the presence of zero values of the concentration in part
of it. Similarly, the far-field relative dispersion region in which the intermittency in the one-point
statistics is suppressed, corresponds to the second phase of our DNS results (Fig. 7, bottom panel, t3
and t4) in which the scalar has filled the box and the mixing acts towards a complete homogenization
of the concentration.

In the description of the dispersion process made so far, we adopted a jargon familiar to
researchers working in the field of the atmospheric pollutant dispersion. Other researcher working
reactive and nonreactive scalar mixing in turbulent flows adopt a different terminology to identify
different regimes of the time evolution of the tracer distribution. According to this terminology,
the second phase of our numerical simulations shows a behavior similar to that of the “confined
mixture” regime in which, following Duplat and Villermaux [7], a self-convolution mechanism
leads to a sequence of gamma distributions until complete mixing is reached. The dispersion in
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the near-source region where the plume meanders in an unbounded environment has been instead
referred as “ever dispersion mixture” by Duplat et al. [34]. The near-source region investigated
by Duplat et al. [34] is, however, more similar to the initial transient of our simulations in which
the concentration PDFs are not consistent with the gamma model (see Fig. 2 between t0 and t1),
rather than what we referred to as the first phase where the gamma model actually holds. Similar
considerations about the lack of accuracy of the gamma distribution as a model for the concentration
PDFs very close to the release point were also presented by Sawford and Stapountzis [35] and
Ardeshiri et al. [14].

V. CONCLUSIONS

We employed direct numerical simulations to investigate the passive-scalar dispersion and the
related mixing processes within turbulent flows in a synergistic approach that involved the use of
wind-tunnel measurements for the cross validation (numerical and experimental) of the gamma
model for the scalar distribution concentration. In particular, we simulated a single puff in homoge-
neous isotropic turbulence in a cubic domain with a regular grid and periodic boundary conditions.

Focus of our paper is the analysis of the evolution in time of the spatial statistics of the scalar
concentration within a fluid volume as seen in a reference frame following the mean flow. As first
step, we tested the capability of different model distributions (the gamma, the lognormal, and the
Weibull 2p) in reproducing the spatial PDF of the concentration showing that the gamma distribution
is the most robust and convenient model to describe the whole temporal evolution of the dispersion
process. Assuming the gamma distribution as the PDF describing the scalar concentration within a
given volume, we developed a simple probabilistic mixing model, that allows us to link the decay
rate of the intensity of the concentration fluctuations ic to a characteristic mixing timescale.

Finally, drawing an analogy between the present DNS results and the previous experimental data
allows us to explain the similarity observed between the spatial statistics in the system considered
here and the one-point statistics registered in wind-tunnel experiments. Notably, the first phase of
the simulations provides a PDF that can be observed in wind-tunnel experiments by registering the
concentration signal close to the source when the meandering of the plume is intense. Instead, in
the second phase of the simulation when the scalar has filled the whole domain the concentration
PDF corresponds to experimental PDF registered far from the source where the plume meandering
is suppressed, and the plume spread is governed by the relative dispersion.

A comparison between DNS and wind-tunnel measurements of stratified turbulence will be the
subject of a future investigation along the lines of the present paper. Indeed, unlike the HIT case,
in the presence of stratification, sporadic extreme events develop in the vertical component of the
velocity and in the temperature affecting mixing and transport properties of turbulent flows as shown
in previous works [36–39].

ACKNOWLEDGMENTS

R.M. acknowledges support from the Project “EVENTFUL” (Grant No. ANR-20-CE30-0011),
funded by the French “Agence Nationale de la Recherche”—ANR.

[1] K. R. Sreenivasan, Turbulent mixing: A perspective, Proc. Natl. Acad. Sci. USA 116, 18175 (2018).
[2] E. Villermaux and J. Duplat, Mixing as an Aggregation Process, Phys. Rev. Lett. 91, 184501 (2003).
[3] J. Bakosi, P. Franzese, and Z. Boybeyi, Probability density function modeling of scalar mixing from

concentrated sources in turbulent channel flow, Phys. Fluids 19, 115106 (2007).
[4] Q. Nguyen and D. V. Papavassiliou, A statistical model to predict streamwise turbulent dispersion from

the wall at small times, Phys. Fluids 28, 125103 (2016).

034502-11

https://doi.org/10.1073/pnas.1800463115
https://doi.org/10.1103/PhysRevLett.91.184501
https://doi.org/10.1063/1.2803348
https://doi.org/10.1063/1.4968182


MICHEL ORSI et al.

[5] P. R. Van Slooten, Jayesh, and S. B. Pope, Advances in pdf modeling for inhomogeneous turbulent flows,
Phys. Fluids 10, 246 (1998).

[6] E. Yee and A. Skvortsov, Scalar fluctuations from a point source in a turbulent boundary layer, Phys. Rev.
E 84, 036306 (2011).

[7] J. Duplat and E. Villermaux, Mixing by random stirring in confined mixtures, J. Fluid Mech. 617, 51
(2008).

[8] D. J. Wilson and B. W. Simms, Exposure time effects on concentration fluctuations in plumes (Alberta
Environment, 1985).

[9] M. Cassiani, The volumetric particle approach for concentration fluctuations and chemical reactions in
Lagrangian particle and particle-grid models, Boundary-Layer Meteorol. 146, 207 (2013).

[10] M. B. Bertagni, M. Marro, P. Salizzoni, and C. Camporeale, Solution for the statistical moments of scalar
turbulence, Phys. Rev. Fluids 4, 124701 (2019).

[11] M. B. Bertagni, M. Marro, P. Salizzoni, and C. Camporeale, Level-crossing statistics of a passive scalar
dispersed in a neutral boundary layer, Atmos. Environ. 230, 117518 (2020).

[12] M. Cassiani, M. Bertagni, M. Marro, and P. Salizzoni, Concentration fluctuations from localized atmo-
spheric releases, Boundary-Layer Meteorol. 177, 461 (2020).

[13] C. Nironi, P. Salizzoni, M. Marro, P. Mejean, N. Grosjean, and L. Soulhac, Dispersion of a passive
scalar fluctuating plume in a turbulent boundary layer. Part I: Velocity and concentration measurements,
Boundary-Layer Meteorol. 156, 415 (2015).

[14] H. Ardeshiri, M. Cassiani, S. Park, A. Stohl, I. Pisso, and S. Dinger, On the convergence and capability
of large eddy simulation for passive plumes concentration fluctuations in an infinite-Re neutral boundary
layer, Boundary-Layer Meteorol. 176, 291 (2020).

[15] P. D. Mininni, D. Rosenberg, R. Reddy, and A. Pouquet, A hybrid mpi-openmp scheme for scalable
parallel pseudospectral computations for fluid turbulence, Parallel Comput. 37, 316 (2011).

[16] See Supplemental Material at https://link.aps.org/supplemental/10.1103/PhysRevFluids.6.034502 to
suitably capture the connection between the concentration pdf and the concentration fluctuations
intensity ic.

[17] S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Stat. 22, 79 (1951).
[18] Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, edited by

M. Abramowitz and I. A. Stegun, National Bureau of Standards Applied Mathematics Series (National
Bureau of Standards, Washington, DC, 1965).

[19] E. Yee and R. Chan, A simple model for the probability density function of concentration fluctuations in
atmospheric plumes, Atmos. Environ. 31, 991 (1997).

[20] A. Skvortsov and E. Yee, Scaling laws of peripheral mixing of passive scalar in a wall-shear layer, Phys.
Rev. E 83, 036303 (2011).

[21] D. Oettl and E. Ferrero, A simple model to assess odour hours for regulatory purposes, Atmos. Environ.
155, 162 (2017).

[22] M. Cassiani, P. Franzese, and U. Giostra, A PDF micromixing model of dispersion for atmospheric flow.
Part I: development of the model, application to homogeneous turbulence and to neutral boundary layer,
Atmos. Environ. 39, 1457 (2005).

[23] P. G. Moschopoulos, The distribution of the sum of independent gamma random variables, Ann. Inst.
Statist. Math. 37, 541 (1985).

[24] C. H. Sim, Point processes with correlated gamma interarrival times, Stat. Probabil. Lett. 15, 135 (1992).
[25] A. M. Mathai, Storage capacity of a dam with gamma type inputs, Ann. Inst. Statist. Math. 34, 591 (1982).
[26] M. Akkouchi, On the convolution of gamma distributions, Soochow J. Math. 31, 205 (2005).
[27] T. Stewart, L. W. G. Strijbosch, H. Moors, and P. van Batenburg, A simple approximation to the

convolution of gamma distributions (CentER Discussion Paper, 2007).
[28] S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, UK, 2011).
[29] M. Cassiani, A. Radicchi, J. Albertson, and U. Giostra, An efficient algorithm for scalar PDF modeling

in incompressible turbulent flow; numerical analysis with evaluation of IEM and IECM micro-mixing
models, J. Comput. Phys. 223, 519 (2007).

034502-12

https://doi.org/10.1063/1.869564
https://doi.org/10.1103/PhysRevE.84.036306
https://doi.org/10.1017/S0022112008003789
https://doi.org/10.1007/s10546-012-9752-3
https://doi.org/10.1103/PhysRevFluids.4.124701
https://doi.org/10.1016/j.atmosenv.2020.117518
https://doi.org/10.1007/s10546-020-00547-4
https://doi.org/10.1007/s10546-015-0040-x
https://doi.org/10.1007/s10546-020-00537-6
https://doi.org/10.1016/j.parco.2011.05.004
https://link.aps.org/supplemental/10.1103/PhysRevFluids.6.034502
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1016/S1352-2310(96)00255-5
https://doi.org/10.1103/PhysRevE.83.036303
https://doi.org/10.1016/j.atmosenv.2017.02.022
https://doi.org/10.1016/j.atmosenv.2004.11.020
https://doi.org/10.1007/BF02481123
https://doi.org/10.1016/0167-7152(92)90126-P
https://doi.org/10.1007/BF02481056
https://doi.org/10.1016/j.jcp.2006.09.023


SCALAR MIXING IN HOMOGENEOUS ISOTROPIC …

[30] Z. Warhaft and J. L. Lumley, An experimental study of the decay of temperature fluctuations in grid-
generated turbulence, J. Fluid Mech. 88, 659 (1978).

[31] S. Tavoularis and S. Corrsin, Experiments in nearly homogenous turbulent shear flow with a uniform
mean temperature gradient. part 1, J. Fluid Mech. 104, 311 (1981).

[32] Z. Warhaft, Passive scalars in turbulent flows, Annu. Rev. Fluid Mech. 32, 203 (2000).
[33] S. Heinz, Statistical Mechanics of Turbulent Flows (Springe-Verlag, Berlin, Heidelberg, New York, Tokyo,

2003).
[34] J. Duplat, C. Innocenti, and E. Villermaux, A nonsequential turbulent mixing process, Phys. Fluids 22,

035104 (2010).
[35] B. L. Sawford and H. Stapountzis, Concentration fluctuations according to fluctuating plume models in

one and two dimensions, Boundary-Layer Meteorol. 37, 89 (1986).
[36] R. Marino, P. Mininni, D. Rosenberg, and A. Pouquet, Inverse cascades in rotating stratified turbulence:

fast growth of large scales, Europhys. Lett. 102, 44006 (2013).
[37] F. Feraco, R. Marino, A. Pumir, L. Primavera, P. Mininni, A. Pouquet, and D. Roesenberg, Vertical drafts

and mixing in stratified turbulence: Sharp transition with froude number, Europhys. Lett. 123, 44002
(2018).

[38] A. Pouquet, D. Rosenberg, and R. Marino, Linking dissipation, anisotropy and intermittency in rotating
stratified turbulence, Phys. Fluids 31, 105116 (2019).

[39] D. Buaria, A. Pumir, F. Feraco, R. Marino, A. Pouquet, D. Rosenberg, and L. Primavera, Single-particle
lagrangian statistics from direct numerical simulations of rotating-stratified turbulence, Phys. Rev. Fluids
5, 064801 (2020).

034502-13

https://doi.org/10.1017/S0022112078002335
https://doi.org/10.1017/S0022112081002930
https://doi.org/10.1146/annurev.fluid.32.1.203
https://doi.org/10.1063/1.3319821
https://doi.org/10.1007/BF00122758
https://doi.org/10.1209/0295-5075/102/44006
https://doi.org/10.1209/0295-5075/123/44002
https://doi.org/10.1063/1.5114633
https://doi.org/10.1103/PhysRevFluids.5.064801

